On the Existence of a New Family of Diophantine Equations for Ω Toby Ord and Tien D. Kieu
نویسندگان
چکیده
We show how to determine the k-th bit of Chaitin’s algorithmically random real number, Ω, by solving k instances of the halting problem. From this we then reduce the problem of determining the k-th bit of Ω to determining whether a certain Diophantine equation with two parameters, k and N , has solutions for an odd or an even number of values of N . We also demonstrate two further examples of Ω in number theory: an exponential Diophantine equation with a parameter, k, which has an odd number of solutions iff the kth bit of Ω is 1, and a polynomial of positive integer variables and a parameter, k, that takes on an odd number of positive values iff the k-th bit of Ω is 1.
منابع مشابه
On the existence of a new family of Diophantine equations for Omega
We show how to determine the k-th bit of Chaitin’s algorithmically random real number Ω by solving k instances of the halting problem. From this we then reduce the problem of determining the k-th bit of Ω to determining whether a certain Diophantine equation with two parameters, k and N , has solutions for an odd or an even number of values of N . We also demonstrate two further examples of Ω i...
متن کاملOn the existence of a new family of Diophantine equations for z
We show how to determine the -th bit of Chaitin’s algorithmically random real number by solving instances of the halting problem. From this we then reduce the problem of determining the -th bit of to determining whether a certain Diophantine equation with two parameters, and , has solutions for an odd or an even number of values of . We also demonstrate two further examples of in number theory:...
متن کامل. N T ] 1 7 Fe b 20 03 REPRESENTATIONS OF Ω IN NUMBER THEORY : FINITUDE VERSUS PARITY
We present a new method for expressing Chaitin’s random real, Ω, through Diophantine equations. Where Chaitin’s method causes a particular quantity to express the bits of Ω by fluctuating between finite and infinite values, in our method this quantity is always finite and the bits of Ω are expressed in its fluctuations between odd and even values, allowing for some interesting developments. We ...
متن کاملA reformulation of the Hilbert’s tenth problem through Quantum Mechanics
Inspired by Quantum Mechanics, we reformulate the Hilbert’s tenth problem in the domain of integer arithmetics into a problem involving a set of coupled differential equations. Analytical and numerical studies of the differential equations will either themselves settle and/or be of crucial assistance for some physical implementation of an adiabatic quantum algorithm to determine the existence o...
متن کاملUsing Biased Coins as Oracles
While it is well known that a Turing machine equipped with the ability to flip a fair coin cannot compute more than a standard Turing machine, we show that this is not true for a biased coin. Indeed, any oracle set X may be coded as a probability pX such that if a Turing machine is given a coin which lands heads with probability pX it can compute any function recursive in X with arbitrarily hig...
متن کامل